RELATIVITY IN CURVED SPACETIME (2007)						
	E OF CONTENTS					
	Overview	vi				
	Table of Contents	vii				
	Welcome About the Author	xiii xiv				
	Notes to the First Edition	xiv				
	Acknowledgements and Credits	XV				
PART	Abbreviations I: BACKGROUND PHYSICS	xvi				
	Speed of Light 3					
1.1:	Light is pretty fast	5				
1.2: 1.3:	Lightspeed varies Lightspeed is not just the speed of light	6 7				
1.4:	Lightspeed affects inertia	8				
1.5: 1.6:	Lightspeed controls timeflow	8 8				
1.7:	Lightspeed is locally constant Lightspeed is now defined as constant	9				
1.8:	The gravity well	9				
1.9: 1.10:	Light travels in straight lines. Except when it doesn't Light used to define a straight line	11 12				
	vity, Energy and Mass	13				
2.1:	What is mass?	15				
2.2: 2.3:	Does light have mass? Genie in a bottle: Thought-experiments with	16				
	bottled light	17				
2.4: 2.5:	Difficulty of detecting the effect	19 20				
2.5. 2.6:	Mass-to-energy conversion History of E=mc ²	20				
2.7:	Energy has mass, period	22				
	ved Space and Time Gravity is what, exactly?	23				
3.1: 3.2:	Gravity bends light	25 25				
3.3:	Gravity warps geometry	26				
3.4: 3.5:	Gravity as a variation in inertia Energy-change in light due to gravity	28 28				
3.6:	Gravitational redshifts and blueshifts	29				
3.7:	Gravitational time dilation	30				
3.8: 4: Rel	Not just curved space, but curved spacetime ativity	32 33				
4.1:	Relativity of space	35				
4.2: 4.3:	Relativity of time Relativity of velocity	35 36				
4.4:	Isaac Newton's "Principia"	37				
4.5:	Mach and relativity	38				
4.6: 4.7:	Practical advantages of "relativistic" arguments Applying Occam's Razor	39 39				
4.8:	Different "Principles of Relativity"	40				
4.9: 4.10:	Causes of confusion Relativity of acceleration	41 42				
4.11:	Relative acceleration vs. absolute acceleration	43				
4.12:	Relativity of rotation	45				
4.13: 4.14:	"Centrifugal" and "Coriolis" fields Rotational dragging	45 47				
4.15:	Experimental verification	49				
4.16:	Equivalence principles	50 51				
5.1:	Newtonian Catastrophe Newton's unification scheme	53				
5.2:	The lightspeed mistake	54				
5.3: 5.4:	The "space-density" mistake The light-energy mistake	54 55				
5.5:	Loss of wave-particle duality	55				
5.6:	Newton vs. Huyghens	56				
5.7: 5.8:	The lightspeed trap Consequences for physics	57 59				
PART	II: EFFECTS DUE TO RELATIVE MOTION					
	opler Shifts	63				
6.1: 6.2:	"Stationary observer" Doppler effect "Stationary source" Doppler effect	65 66				
6.3:	Comparisons	66				
6.4: 6.5:	Transverse Doppler effects (audio) Optical Doppler effects	67 69				
6.6:	Longitudinal Doppler effect under Special Relativity	69 69				
6.7:	Transverse Doppler effect under Special Relativity	70				
7: App 7.1:	parent Length-Changes in Moving Objects Apparent changes in length	71 73				
7.2:	Approaching objects appear elongated	73				
7.3:	Receding objects appear contracted	73				
7.4: 7.5:	Degree of contraction or elongation Special relativity and length-changes	74 75				
7.6:	Rulers and gravitation	76				

	rration of Angles	77		
8.1: 8.2:	Aberration of Angles Relativistic aberration at 90 degrees	79 80		
8.3:	The Relativistic Ellipse	81		
8.4:	Putting it all together			
8.5:	Relativistic ellipse: Newtonian theory	83		
8.6:	Relativistic ellipse: Special relativity	84		
9: Mov	ving bodies drag light	85		
9.1:	Generality of dragging effects	87		
9.2:	Naming conventions: Gravitomagnetism,			
	frame-dragging	87		
9.3:	Argument #1: Linear GM as a gravitational			
0.4.	timelag effect	87		
9.4:	Argument #2: "Effective gravitational potential" depends on relative velocity	88		
9.5:	Argument #3: Gravitational smudging	89		
9.6:	Argument #4: The slingshot effect	89		
9.7:	Argument #5: Rotational GM and			
	gravitational timelag	90		
9.8:	Argument #6: QM and "probabilistic" smudging	91		
9.9:	Argument #7: Experiment: The Fizeau effect	91		
9.10:	Inconsistencies in our approach to velocity	92		
9.11:	Cancellation and unification?	94		
9.12:	Implementation – the tilted gravity-well	95		
9.13:	Zeno revisited: the "impossibility" of motion Worldlines and curvature	96 97		
9.14: 9.15:	Uh-oh	97 98		
9.16:	The score chart	99		
9.17:	"Relativistic" implementations of lightspeed	33		
0	constancy	100		
PART	III: LIMITS TO OBSERVATION			
	antum Mechanics and Observability	103		
10.1:	The origin of quantum mechanics	105		
10.2:	Is quantum mechanics a theory?	106		
10.3:	The "Copenhagen" and "Hidden Variable"			
	interpretations	107		
10.4:	The two-slit experiment	108		
10.5:	Quantum mechanics and everyday experience	111		
10.6:	Illusion and reality	112		
10.7:	Pair Production	114		
10.8:	Virtual particles	114		
10.9:	Pseudo- pair production	115		
11: Da 11.1:	rk Stars and Black Holes	117 119		
	John Michell's dark stars	120		
11.2: 11.3:	Properties of a compact gravitational object Escape velocity calculations and the	120		
11.0.	gravitational horizon	121		
11.4:	Tidal forces	121		
11.5:	"Visiting" particles around a dark star	122		
11.6:	Dark stars and "acoustic" metrics	123		
11.7:	Acoustic metrics and nonlinearity	124		
11.8:	Black holes under GR1915	125		
11.9:	The Kerr black hole	129		
11.10:		130		
11.11:		130		
11.12: 11.13:		131 132		
11.13.	Pair-production and pseudo-pair-production	133		
11.15:	Attempts to eliminate the "dark star" explanation	134		
11.16:	Acoustic metrics, once again	135		
11.17:	"Acceleration radiation"	136		
11.18:	The Black Hole Information Paradox	137		
11.19:		138		
11.20:		139		
11.21:		140		
11.22:		141		
11.23:	The Holographic Principle in action	142		
11.24: 11.25:	The "no-signal" problem The verdict	143 144		
		144		
	nat's wrong with General Relativity?	147		
12.1: 12.2:	"Core" experimental tests of general relativity Experimental significance	149 152		
12.2:		152		
12.3.	Incompatibility with quantum mechanics Fudge factor?: The Cosmological Constant	154		
12.5:	Possible breaking of conservation laws	155		
12.6:	Possible incompatibility with Mach's principle	155		
12.7:	Fudge factor?: Galactic curves and Dark Matter	156		
12.8:	Arbitrary suspension of the Equivalence Principle	157		
12.9:	Invoking reduction to flat spacetime	159		
12.10:	Use of tailor-made definitions	160		
12.11:	Do cosmological horizons count as "acoustic"?	163		

12.12:	Doppler effects and the Black Hole	
	Information Paradox	164
12.13: 12.14:	Grand unification?	165 167
	Gravitomagnetic incompatibility? Complexity	168
12.16:	Is GR1915 scientifically falsifiable?	169
12.17:	Blaming special relativity	170
13: Ho 13.1:	rrible Nasty Mathematics A family of relativistic theories	171 173
13.1:	Selecting a reference theory	174
13.3:	Defining the range	174
13.4:	Ellipses	175
13.5: 13.6:	Special relativity as a special solution Positive values of © and positive curvature	175 176
13.7:	Rejecting negative solutions for ©	176
13.8:	Gravitomagnetism suggests positive ©	177
13.9: 13.10:	Graphed Doppler responses Setting "one" as a higher limit for ©	177 178
13.11:	Using the BHIP to set a minimum of "one" for ©	178
13.12:	Oops?	179
13.13: PART V	Preliminary conclusions V: FLAT SPACETIME AND SPECIAL RELATIVITY	180
	stein's "special" theory of relativity	183
14.1:	The birth of special relativity	185
14.2:	Failure of earlier theories	185
14.3: 14.4:	"Draggable" aethers Absolute aether	185 186
14.5:	Aether, either, neither, neither	187
14.6:	Lorentz Ether Theory (LET), c. 1904	188
14.7: 14.8:	Special relativity, 1905 Additional interpretational overhead	189 190
14.9:	Minkowski Spacetime	192
14.10:		194
15: So, 15.1:	what's wrong with the special theory?	195 197
15.1.	SR and Observerspace Is the special theory "robust"?	197
15.3:	Minkowski spacetime as an argument against SR	199
15.4:	The "stratification" problem	200
15.5: 15.6:	Does SR "do" acceleration? Extensibility	201 203
15.7:	Cumulative redshift effects	203
15.8:	Thermal redshifts	205
15.9: 15.10:	Cosmological redshifts Round-trip effects in general	206 208
	perimental Evidence for Special Relativity	209
16.1:	Commonly-cited evidence for special relativity	211
16.2: 16.3:	E=mc ² "Classical Theory" vs. Special Relativity	211 212
16.4:	"Transverse" redshifts	213
16.5:	"Longitudinal" Doppler shifts	214
16.6:	The lightspeed upper limit in particle accelerators	215
16.7:	The "searchlight" effect	216
16.8:	Velocity-addition	216
16.9: 16.10:	Particle tracklengths Muon showers	216 217
16.11:	Particle storage rings & centrifugal time dilation	
16.12:	deSitter / Brecher disproof of simple	
16.13:	emission theory "Domain of applicability" issues	219 220
16.14:	Conclusions	222
PART	I: FUTURE PHYSICS	
	smologies	225
17.1: 17.2:	The expanding universe The "Big Bang"	227 227
17.3:	Spatial closure	228
17.4:	Expansion curves	231
17.5: 17.6:	Cosmological time coordinates The Hartle-Hawking "bubble universe"	232 234
17.7:	Entropy, arrows of time, and the Big Crunch	235
17.8:	Extending the "bubble" model	236
17.9: 17.10:	Variable dimensionality? "Mirror" and "kaleidoscope" universes	237 237
17.11:		239
17.12:	A few Multiverses	240
17.13: 17.14:	Fractal universe arguments Why is the universe rational?	243 246
17.15:	The Drake Equation	240
17.16:	Before Event Zero	249
18: Tro 18.1:	whet is a wormhole?	251 253
18.2:	"Spacetime surgery" and simple optics	253 253

18.3:	Wormhole instability?	254
18.4:	The distance problem	256
18.5:	The ageing problem	256
18.6:	The "antihorizon" problem	256
18.7: 18.8:	"Anti-wormholes" and spatial reversal The Kerr wormhole	257 260
18.9:	The fieldline problem	261
18.10:	The gravity problem	261
18.11:	Wormhole politics	262
18.12:	The time-connection problem	262
18.13:	Wormhole time travel?	263
	Mistaken time machine behaviour	264
	Quantum foam	265
	Scale-dependent topology	266
	Pseudowormholes Does quantum foam contain <i>only</i>	266
10.10.	pseudowormholes?	268
18.19:	Do wormholes exist at all?	268
	ric Engineering and Warp Drives	269
	"Space bungees" and regenerative braking	271
19.2:	Boomeranging	272
19.3:	Exotic-matter drives	273
19.4:	The negative-field problem	274
19.5:	Ultrafast travel using simple gravity	275
19.6:	The "cresting" problem	276
19.7:	The Krasnikov tube	277
19.8: 19.9:	Warpfield Hawking radiation?	278 279
	The "acoustics" analogue Simple warpfield generators	279
	Toroidal configurations	282
	Cancellation and non-cancellation	283
	The 2-spin torus	284
	Self-refraction and cross-refraction	286
19.15:	General field-refraction issues	287
	Momentum conversion	288
19.17:	"Reactionless" drives and deferred momentum	289
	Can we build a working warp drive?	289
	/II: THE HUMAN FACTOR	
	itations of language and procedure	293
20.1:	The order in which things are written	295
20.2:	Lightspeed, velocity, and language traps	295
20.3: 20.4:	Fractured logic Logic traps and logical black holes	297 298
20.5:	More examples of circular thinking	300
20.6:	Is consistency all it's cracked up to be?	302
20.7:	"First answer" syndrome	303
20.8:	Life, Death, and the Square Root of Two	304
20.9:	The story of Pi	305
	Pi and global extinction	307
	Naming rituals, binary logic and Giant Pandas	308
	Intransitive logics	309
20.13:	Complex logical spaces	310 312
20.14.	Intransitive ordering and gravitation "Certainty" parameters	314
20.16:	Living with uncertainty	315
20.17:	Conclusions	316
	Perils of Experimentation	317
	Evaluating science neutrally	319
21.2:	Perception filters	321
21.3:	System bias and "v1.0" syndrome	323
21.4:	Safety in numbers	325
21.5:	Accident reporting	326
21.6: 21.7:	Quantum sociology?	327 328
21.7.	Pattern Recognition and group decisionmaking Market Forces	320 331
21.9:	Physics nightmares	333
	nclusions	335
22.1:	SR-based or NM-based physics?	337
22.2:	The fork in the road	339
22.3:	Warning signs	339
22.4:	Mathematical "truth" vs. relevance	344
22.5:	Alternative alternatives	346
22.6:	Life after special relativity	346
	/III: Calculations, References and Index	0.40
	I: Doppler shifts	348
	2: E=mc ² from Newtonian mechanics 3: Non-SR transverse Doppler / Aberration redshift	350
	4: The "Box of Frogs"/ classical Hawking radiation	352 354
	5: Comparison table	357
	Major Players	358
	Topic References	359
	General References	365
	Index	371